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Makekau (1991), Grycewicz (1995, 1996), Rodolfo, Rajbenbach, and Huignard 
(1995), Grycewicz and Javidi (1996), Petillot, Guibert, and de Bougrenet (1996), 
Soifer et al. (1996), Gamble, Frye, and Grieser (1992), Wilson, Watson, and Paek 
(1997), Kobayashi and Toyoda (1999), and Watson, Grother, and Casasent (2000). 
However, these optical systems usually suffer from rotation and distortion variations 
and the hardware/optical components are complex and expensive; therefore, optical 
fingerprint matching technology has not reached satisfactory maturity yet. 

4.3  Minutiae-based Methods 

Minutiae matching is certainly the most well-known and widely used method for fingerprint 
matching, thanks to its strict analogy with the way forensic experts compare fingerprints and 
its acceptance as a proof of identity in the courts of law in almost all countries. 

Problem formulation 

Let T and I be the representation of the template and input fingerprint, respectively. Unlike in 
correlation-based techniques, where the fingerprint representation coincides with the finger-
print image, here the representation is a feature vector (of variable length) whose elements are 
the fingerprint minutiae. Each minutia may be described by a number of attributes, including 
its location in the fingerprint image, orientation, type (e.g., ridge termination or ridge bifurca-
tion), a weight based on the quality of the fingerprint image in the neighborhood of the minu-
tia, and so on. Most common minutiae matching algorithms consider each minutia as a triplet 
m = {x,y,θ} that indicates the x,y minutia location coordinates and the minutia angle θ: 
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where m and n denote the number of minutiae in T and I, respectively. 
A minutia jm′ in I and a minutia im  in T are considered “matching,” if the spatial dis-

tance (sd) between them is smaller than a given tolerance r0 and the direction difference (dd) 
between them is smaller than an angular tolerance θ0: 

( ) ( ) ( ) ,ijijij ryyxx,sd 0
22    ≤−′+−′=′ mm         and (5) 

( ) ( ) 0       360  min θθθθθ ≤−′−°−′=′ ijijij ,,dd mm . (6) 

Equation (6) takes the minimum of ij θθ −′  and ij θθ −′−°360  because of the circularity of 

angles (the difference between angles of 2° and 358° is only 4°). The tolerance boxes (or hy-
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per-spheres) defined by r0 and θ0 are necessary to compensate for the unavoidable errors made 
by feature extraction algorithms and to account for the small plastic distortions that cause the 
minutiae positions to change. 

Aligning the two fingerprints is a mandatory step in order to maximize the number of 
matching minutiae. Correctly aligning two fingerprints certainly requires displacement (in x 
and y) and rotation (θ) to be recovered, and likely involves other geometrical transformations: 

• scale has to be considered when the resolution of the two fingerprints may vary (e.g., 
the two fingerprint images have been taken by scanners operating at different resolu-
tions); 

• other distortion-tolerant geometrical transformations could be useful to match minu-
tiae in case one or both of the fingerprints is affected by severe distortions. 

In any case, tolerating a higher number of transformations results in additional degrees of 
freedom to the minutiae matcher: when a matcher is designed, this issue needs to be carefully 
evaluated, as each degree of freedom results in a huge number of new possible alignments 
which significantly increases the chance of incorrectly matching two fingerprints from differ-
ent fingers. 

Let map(.) be the function that maps a minutia jm′  (from I) into jm ′′  according to a given 

geometrical transformation; for example, by considering a displacement of [∆x, ∆y] and a 
counterclockwise rotation θ around the origin1: 
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Let mm(.) be an indicator function that returns 1 in the case where the minutiae jm ′′  and im  

match according to Equations (5) and (6): 
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Then, the matching problem can be formulated as 
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where P(i) is an unknown function that determines the pairing between I and T minutiae; in 
particular, each minutia has either exactly one mate in the other fingerprint or has no mate at 
all: 
                                                           
1 The origin is usually selected as the minutiae centroid (i.e., the average point); before the matching 
step, minutiae coordinates are adjusted by subtracting the centroid coordinates.  
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1. P(i) = j indicates that the mate of the mi in T is the minutia jm′  in I; 

2. P(i) = null indicates that minutia mi in T has no mate in I; 
3. a minutia jm′  in I, such that ∀ i = 1..m, P(i) ≠ j has no mate in T; 

4. ∀ i = 1..m, k = 1..m, i ≠ k ⇒ P(i) ≠ P(k) or P(i) = P(k) = null (this requires that each 
minutia in I is associated with a maximum of one minutia in T). 

Note that, in general, P(i) = j does not necessarily mean that minutiae jm′  and im  match in 

the sense of Equations (5) and (6) but only that they are the most likely pair under the current 
transformation. 

Expression (7) requires that the number of minutiae mates be maximized, independently of 
how strict these mates are; in other words, if two minutiae comply with Equations (5) and (6), 
then their contribution to expression (7) is made independently of their spatial distance and of 
their direction difference. Alternatives to expression (7) may be introduced where the residual 
(i.e., the spatial distance and the direction difference between minutiae) for the optimal align-
ment is also taken into account.  

 Solving the minutiae matching problem (expression (7)) is trivial when the correct align-
ment (∆x, ∆y, θ ) is known; in fact, the pairing (i.e., the function P) can be determined by set-
ting for each i = 1..m: 

• P(i) = j   if   ( )j,y,xj map mm ′=′′ ∆∆ θ  is closest to im  among the minutiae 

( ) ( ){ } 1   ,..1      =′′=′=′′ ∆∆ ikk,y,xk ,mmnk|map mmmm θ ;  

• P(i) = null  if  ∀ k=1..n, ( )( ) 0=′∆∆ ik,y,x ,mapmm mmθ . 

To comply with constraint 4 above, each minutia jm ′′  already mated has to be marked, to 

avoid mating it twice or more. Figure 4.4 shows an example of minutiae pairing given a fin-
gerprint alignment.  

To achieve the optimum pairing (according to Equation (7)), a slightly more complicated 
scheme should be adopted: in fact, in the case when a minutia of I falls within the tolerance 
hyper-sphere of more than one minutia of T, the optimum assignment is that which maximizes 
the number of mates (refer to Figure 4.5 for a simple example). 

The maximization in (7) can be easily solved if the function P (minutiae correspondence) 
is known; in this case, the unknown alignment (∆x, ∆y, θ ) can be determined in the least 
square sense (Umeyana (1991) and Chang et al. (1997)). Unfortunately, in practice, neither the 
alignment parameters nor the correspondence function P are known and, therefore, solving the 
matching problem is very hard. A brute force approach, that is, evaluating all the possible so-
lutions (correspondences and alignments) is prohibitive as the number of possible solutions is 
exponential in the number of minutiae (the function P is more than a permutation due to the 
possible null values). A few brute force approaches have also been proposed in the literature; 
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for example, Huvanandana, Kim, and Hwang (2000) proposed coarsely quantizing the minu-
tiae locations and performing an exhaustive search to find the optimum alignment.   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4. Minutiae of I mapped into T coordinates for a given alignment. Minutiae of T are 
denoted by os, whereas I minutiae are denoted by ×s. Note that I minutiae are referred to as 
m ′′ , because what is shown in the figure is their mapping into T coordinates. Pairing is per-
formed according to the minimum distance. The dashed circles indicate the maximum spatial 
distance. The gray circles denote successfully mated minutiae; minutia 1m  of T and minutia 

3m ′′  of I have no mates, minutiae 3m  and 6m ′′  cannot be mated due to their large direction dif-

ference.  

 
 
 
 

Figure 4.5. In this example, if 1m  were mated with 2m ′′  (the closest minutia), 2m  would remain 

unmated; however, pairing 1m  with 1m ′′ , allows 2m  to be mated with 2m ′′ , thus maximizing 

Equation (7). 

In the pattern recognition literature the minutiae matching problem has been generally ad-
dressed as a point pattern matching problem. Even though a small difference exists due to the 
presence of a direction associated with each minutia point, the two problems may be ap-
proached analogously. Because of its central role in many pattern recognition and computer 
vision tasks (e.g., object matching, remote sensing, camera calibration, motion estimation), 
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