
742 CISST’02 International Conference

PREPROCESSING FOR SKELETON-BASED FINGERPRINT MINUTIAE EXTRACTION

Feng Zhao and Xiaoou Tang

Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
{fzhao0, xtang}@ie.cuhk.edu.hk

ABSTRACT

In this paper, we propose to use the fingerprint valley
instead of ridge for the binarization-thinning process to
extract fingerprint minutiae. We first use several
preprocessing steps on the binary image in order to
eliminate the spurious lakes and dots, and to reduce the
spurious islands, bridges, and spurs in the skeleton
image. Finally, by removing all the bug pixels introduced
at the thinning stage, our algorithm can detect a
maximum number of minutiae from the fingerprint
skeleton using the Rutovitz Crossing Number.

1. INTRODUCTION

Fingerprints are graphical flow-like ridges and valleys
present on human fingers [1]. They are widely used for
personal identification [2]. Various approaches for
automatic minutiae extraction have been proposed in the
literature. Most of the techniques [3,4,5,6] extract the
minutiae from the skeleton of the fingerprint image. The
skeleton is computed by thinning the binary image, which
is obtained by adaptive thresholding of the gray scale
fingerprint image.

There are two types of minutiae, ridge endings and
ridge bifurcations. Ridges are generally used for minutiae
extraction, since most previous researches assume that the
ridges and valleys in the fingerprint have a similar width
and are equally spaced. In fact, this may not always be
true for various fingerprints collected by different
scanners. For example, the fingerprint images we
collected using an optical scanner show that the average
ridge width (typically 6 pixels) is thicker than the average
valley width (typically 3 to 4 pixels), as illustrated in
Figure 1. Since a thinner binary image is easier for
skeleton computation, we propose to use the valley
instead of ridge for minutiae extraction. We use valley
endings and valley bifurcations as fingerprint minutiae.

After the valley skeleton is extracted from the binary
image, ideally, the width of the skeleton should be strictly
one pixel. However, this is not always true, especially at
the intersection points, thus producing spurious minutiae
points. In this paper, we use a new algorithm to remove
such pixels to improve minutiae extraction.

Figure 1. Fingerprint images acquired using the StarTek
FM100 sensor (White: valleys; Black: ridges).

2. PREPROCESSING

A critical step in an automatic fingerprint
identification system (AFIS) is reliably extracting
minutiae from the input fingerprint images. It generally
consists of the following main steps:

1. Use an adaptive thresholding algorithm to

compute the binary image from the input gray
scale fingerprint image,

2. Use a thinning algorithm to compute the finger
print skeleton from the binary image,

3. Use Rutovitz crossing number to extract
minutiae from the skeleton of fingerprint image.

4. Post-processing the minutiae set according to
some heuristic rules and the duality property.

In this work, we propose several preprocessing

techniques before thinning of the binary image:

CISST’02 International Conference 743

∑
=

+−=
8

1
12

1
i

ii PPCN

1. Use a morphological operator to separate some
linked parallel valleys, thus to eliminate spurious
bridges and spurs in the skeleton,

2. Fill in the small holes with an area (number of
pixels) below a threshold Ta1, thus to eliminate
the spurious lakes in the skeleton,

3. Remove the dots (isolated pixels) and the islands
(short lines) with an area below a threshold Ta2,
thus to eliminate the spurious lakes, dots, and
some islands in the skeleton.

The thresholds should be selected appropriately. If Ta1

and Ta2 are too small, the above spurious minutiae in the
skeleton will not be eliminated completely. If they are too
large, the skeleton will be distorted. In our experiments,
we empirically set Ta1=11 and Ta2=9. Figure 2 shows the
effects of the preprocessing steps.

Figure 2. Examples showing the effect of the
preprocessing steps. (Upper row: original skeleton
images; lower row: skeleton images after preprocessing.)

3. MINUTIAE EXTRACTION

The concept of Crossing Number (CN) is widely used
for extracting the minutiae [3,4,5]. Rutovitz’s definition
[7] of crossing number for a pixel P is:

P4 P3 P2
P5 P P1
P6 P7 P8

where Pi is the binary pixel value in the neighborhood of
P with Pi = (0 or1) and P1=P9.

The skeleton image of fingerprint is scanned and all
the minutiae are detected using the following properties
of CN:

CN Property
0 Isolated point
1 Ending point
2 Connective

point
3 Bifurcation

point
4 Crossing point

Ideally, the width of the skeleton should be strictly one

pixel. However, this is not always true. Figure 3 shows
some examples, where the skeleton has a two-pixel width
at some bug pixel locations.

We define a bug pixel as the one with more than two
4-connected neighbors (marked by bold-italic 1 and 0).
These bug pixels exist in the fork region where
bifurcations should be detected, but they have CN =2
instead of CN >2. The existence of bug pixels may (i)
destroy the integrity of spurious bridges and spurs, (ii)
exchange the type of minutiae points, and (iii) miss
detecting of true bifurcations, as illustrated in Figure 4.
Therefore, before minutiae extraction, we develop a
validation algorithm to eliminate the bug pixels while
preserve the skeleton connectivity at the fork regions. By
scanning the skeleton of fingerprint image row by row
from top-left to bottom-right, we delete the first bug pixel
encountered and then check the next bug pixel again for
the number of 4-connected neighbors. If the number of 4-
connected neighbors after the deletion of previous bug
pixel is still larger than two, it will also be deleted;
otherwise, it will be preserved and treated as a normal
pixel. Some examples are shown in Figure 3. After this
validation process, all the pixels in the skeleton satisfy the
CN properties. Thus we can extract all the minutiae
including true minutiae and false minutiae. The false
minutiae can be eliminated at the post-processing stage.

 1
1 0 1
 1

 1 1
 0 1
 1 1
1 1

 1
 0 1 1
 1 0
1 1

 1
1 0 1
 1 0 1
 1

1
 1
 0 1 1
1 1 1
 1

 1 1
 0 1
 1 0
1 0 1 1
 1

744 CISST’02 International Conference

Figure 3. Examples of bug pixels and their validation.
(Bold-italic 0: deleted bug pixels, bold-italic 1: preserved
bug pixels that are changed to normal pixels.)

(a) (b) (c)

Figure 4. Without validating the bug pixels, we may
have: (a) four bifurcations (“x”) are missed; (b) two
bifurcations are misdetected as two endings (“o”); (c) two
bifurcations are missed including one true bifurcation.

4. EXPERIMENTS

To evaluate the performance of our algorithms, we
randomly select 35 fingerprint images of medium quality
from our fingerprint database. In the experiments, the
scanned fingerprint images (256 x 256, 256 gray level,
500 dpi) are cropped into 170 x 180 in size in order to
remove the very noisy border areas.

The valley skeleton and ridge skeleton are first
obtained from the valley image and its dual ridge image
respectively. The valley skeleton agrees rather well with
the original valley image, while the ridge skeleton
introduces a large number of spurious lakes and bridges.
Consequently, the ridge skeleton will produce more
spurious minutiae. Figure 5 shows a typical example.

The accuracy rates of applying the minutiae extraction
algorithm on ridge skeleton and valley skeleton before
and after preprocessing are reported in Table 1 and Table
2, respectively. In the tables, the total rate is calculated
using the following formula:

ee

tt

BE
BE

rateTotal
+
+

= ,

where Et and Bt are the number of true endings and true
bifurcations, Ee and Be are the number of extracted
endings and bifurcations.

From the results, we can see that after preprocessing
the accuracy rate of bifurcation is improved significantly,
especially for the ridge skeleton. It demonstrates that the
preprocessing algorithm does eliminate a large number of
spurious lakes, bridges, spurs, which introduce false
bifurcations. However, the accuracy rate of endings is
only increased slightly since the preprocessing algorithm
only eliminates some spurious islands that introduce false
endings. In fact, the spurious dots also introduce false
endings and are eliminated efficiently in the

preprocessing stage. However, there are only a small
number of dots in the skeleton image. The improvement
of the accuracy rate of ridge bifurcation is greater than
that of valley bifurcation. This shows that the ridge
skeleton introduces more spurious minutiae. In addition,
the computation speed for valley thinning is much faster
than ridge thinning.

Table 3 shows some typical results of validating the
bug pixels. From the results, we can see that the bug
pixels exist in the fork region where bifurcations should
be extracted. Some fingerprint skeletons may have more
bug pixels and some may have none.

(a)

(b)

Figure 5. (a) Valley skeleton, (b) ridge skeleton (The
skeleton is overlaid on the original gray scale fingerprint
image).

Table 1. Accuracy rates for ridge minutiae.

 Before
preprocessing

After
preprocessing

Ending 10.84 % 10.92 %

Bifurcatio
n

20.24 % 51.32 %

Total rate 13.54 % 17.08 %

Table 2. Accuracy rates for valley minutiae.

CISST’02 International Conference 745

 Before
preprocessing

After
preprocessing

Ending 12.39 % 12.87 %

Bifurcatio
n

16.35 % 26.58 %

Total rate 13.27 % 16.57 %

Table 3. Number of minutiae before and after validating
bug pixels.

After preprocessing After validating bug pixels

Endings Bifurcations Endings Bifurcations

67 47 67 47

87 27 87 27

55 123 55 125

62 110 62 118

77 55 75 57

106 20 93 27

5. CONCLUSION

In this paper, we develop several simple and efficient
preprocessing techniques for minutiae extraction from the
valley instead of ridge of fingerprint. Our minutiae
extraction algorithm can detect all the minutiae, including
both true and false minutiae, using the simple Crossing
Number (CN) on the skeleton images after validating all
the bug pixels introduced at the thinning stage. This
allows the true minutiae preserved and false minutiae
removed in later post-processing stages.

ACKNOWLEDGMENT

We thank Dr. Qiumei Yang for many constructive
comments. The work described in this paper was fully
supported by a grant from the Research Grants Council of
the Hong Kong Special Administrative Region. (Project
no. CUHK4378/99E).

REFERENCES

[1] A. K. Jain, R. Bolle, and S. Pankanti, Biometrics: Personal

Identification in Networked Society, Kluwer Academic
Publishers, 1999.

[2] H. C. Lee and R. E. Gaensslen, Advances in Fingerprint
Technology, Boca Raton: CRC Press, 1994.

[3] N. K. Ratha, S. Chen, and A. K. Jain, “Adaptive flow
orientation-based feature extraction in fingerprint images,”
Pattern Recognition, vol. 28, no. 11, pp. 1657-1672, 1995.

[4] A. K. Jain, L. Hong and R. Bolle, "On-Line Fingerprint
Verification'', IEEE Trans. Pattern Anal. Machine Intell.,
Vol. 19, No. 4, pp. 302-314, 1997.

[5] B. M. Mehtre, “Fingerprint Image Analysis for Automatic
Identification,” Machine Vision and Applications, vol. 6, pp.
124-139, 1993.

[6] A. Farina, Z. M. Kovács-Vajna, and A. Leone, “Fingerprint
minutiae extraction from skeletonized binary images,”
Pattern Recognition, vol. 32, no. 5, pp.877-889, 1999.

[7] D. Rutovitz, “Pattern Recognition,” J. Roy. Statist. Soc., vol.
129, pp. 504-530, 1966.

