
7. The Backpropagation Algorithm

7.1 Learning as gradient descent

We saw in the last chapter that multilayered networks are capable of com-

puting a wider range of Boolean functions than networks with a single layer

of computing units. However the computational e�ort needed for �nding the

correct combination of weights increases substantially when more parameters

and more complicated topologies are considered. In this chapter we discuss a

popular learning method capable of handling such large learning problems |

the backpropagation algorithm. This numerical method was used by di�erent

research communities in di�erent contexts, was discovered and rediscovered,

until in 1985 it found its way into connectionist AI mainly through the work

of the PDP group [382]. It has been one of the most studied and used algo-

rithms for neural networks learning ever since.

In this chapter we present a proof of the backpropagation algorithm based

on a graphical approach in which the algorithm reduces to a graph labeling

problem. This method is not only more general than the usual analytical

derivations, which handle only the case of special network topologies, but

also much easier to follow. It also shows how the algorithm can be e�ciently

implemented in computing systems in which only local information can be

transported through the network.

7.1.1 Di�erentiable activation functions

The backpropagation algorithm looks for the minimum of the error function

in weight space using the method of gradient descent. The combination of

weights which minimizes the error function is considered to be a solution of

the learning problem. Since this method requires computation of the gradient

of the error function at each iteration step, we must guarantee the continu-

ity and di�erentiability of the error function. Obviously we have to use a

kind of activation function other than the step function used in perceptrons,

because the composite function produced by interconnected perceptrons is

discontinuous, and therefore the error function too. One of the more popu-

lar activation functions for backpropagation networks is the sigmoid, a real

function sc : IR! (0; 1) de�ned by the expression

150 7. The Backpropagation Algorithm

sc(x) =
1

1 + e�cx
:

The constant c can be selected arbitrarily and its reciprocal 1=c is called

the temperature parameter in stochastic neural networks. The shape of the

sigmoid changes according to the value of c, as can be seen in Figure 7.1.

The graph shows the shape of the sigmoid for c = 1, c = 2 and c = 3. Higher

values of c bring the shape of the sigmoid closer to that of the step function

and in the limit c!1 the sigmoid converges to a step function at the origin.

In order to simplify all expressions derived in this chapter we set c = 1, but

after going through this material the reader should be able to generalize all

the expressions for a variable c. In the following we call the sigmoid s1(x)

just s(x).

-4 -2 0 2 4
x

1

Fig. 7.1. Three sigmoids (for c = 1, c = 2 and c = 3)

The derivative of the sigmoid with respect to x, needed later on in this

chapter, is
d

dx
s(x) =

e�x

(1 + e�x)2
= s(x)(1� s(x)):

We have already shown that, in the case of perceptrons, a symmetrical activa-

tion function has some advantages for learning. An alternative to the sigmoid

is the symmetrical sigmoid S(x) de�ned as

S(x) = 2s(x)� 1 =
1� e�x

1 + e�x
:

This is nothing but the hyperbolic tangent for the argument x=2 whose shape

is shown in Figure 7.2 (upper right). The �gure shows four types of continuous

\squashing" functions. The ramp function (lower right) can also be used in

learning algorithms taking care to avoid the two points where the derivative

is unde�ned.

Many other kinds of activation functions have been proposed and the

backpropagation algorithm is applicable to all of them. A di�erentiable acti-

vation function makes the function computed by a neural network di�eren-

tiable (assuming that the integration function at each node is just the sum

7.1 Learning as gradient descent 151

-4 -2 0 2 4
x

1

-3 -2 -1 1 2 3
x

-1

1

-3 -2 -1 1 2 3
x

-1

1

-3 -2 -1 1 2 3
x

-1

1

Fig. 7.2. Graphics of some \squashing" functions

of the inputs), since the network itself computes only function compositions.

The error function also becomes di�erentiable.

Figure 7.3 shows the smoothing produced by a sigmoid in a step of the

error function. Since we want to follow the gradient direction to �nd the

minimum of this function, it is important that no regions exist in which

the error function is completely
at. As the sigmoid always has a positive

derivative, the slope of the error function provides a greater or lesser descent

direction which can be followed. We can think of our search algorithm as a

physical process in which a small sphere is allowed to roll on the surface of

the error function until it reaches the bottom.

Fig. 7.3. A step of the error function

7.1.2 Regions in input space

The sigmoid's output range contains all numbers strictly between 0 and 1.

Both extreme values can only be reached asymptotically. The computing

152 7. The Backpropagation Algorithm

units considered in this chapter evaluate the sigmoid using the net amount

of excitation as its argument. Given weights w1; : : : ; wn and a bias ��, a
sigmoidal unit computes for the input x1; : : : ; xn the output

1

1 + exp (
P

n

i=1 wixi � �)
:

A higher net amount of excitation brings the unit's output nearer to 1. The

continuum of output values can be compared to a division of the input space

in a continuum of classes. A higher value of c makes the separation in input

space sharper.

(0,0)

(0,1)

(1,0)

(1,1)

weight

Fig. 7.4. Continuum of classes in input space

Note that the step of the sigmoid is normal to the vector (w1; : : : ; wn;��)
so that the weight vector points in the direction in extended input space in

which the output of the sigmoid changes faster.

7.1.3 Local minima of the error function

A price has to be paid for all the positive features of the sigmoid as activation

function. The most important problem is that, under some circumstances,

local minima appear in the error function which would not be there if the

step function had been used. Figure 7.5 shows an example of a local minimum

with a higher error level than in other regions. The function was computed

for a single unit with two weights, constant threshold, and four input-output

patterns in the training set. There is a valley in the error function and if

gradient descent is started there the algorithm will not converge to the global

minimum.

In many cases local minima appear because the targets for the outputs

of the computing units are values other than 0 or 1. If a network for the

computation of XOR is trained to produce 0.9 at the inputs (0,1) and (1,0)

then the surface of the error function develops some protuberances, where

local minima can arise. In the case of binary target values some local minima

7.2 General feed-forward networks 153

Fig. 7.5. A local minimum of the error function

are also present, as shown by Lisboa and Perantonis who analytically found

all local minima of the XOR function [277].

7.2 General feed-forward networks

In this section we show that backpropagation can easily be derived by linking

the calculation of the gradient to a graph labeling problem. This approach is

not only elegant, but also more general than the traditional derivations found

in most textbooks. General network topologies are handled right from the be-

ginning, so that the proof of the algorithm is not reduced to the multilayered

case. Thus one can have it both ways, more general yet simpler [375].

7.2.1 The learning problem

Recall that in our general de�nition a feed-forward neural network is a com-

putational graph whose nodes are computing units and whose directed edges

transmit numerical information from node to node. Each computing unit is

capable of evaluating a single primitive function of its input. In fact the net-

work represents a chain of function compositions which transform an input

to an output vector (called a pattern). The network is a particular imple-

mentation of a composite function from input to output space, which we call

the network function. The learning problem consists of �nding the optimal

combination of weights so that the network function ' approximates a given

function f as closely as possible. However, we are not given the function f

explicitly but only implicitly through some examples.

Consider a feed-forward network with n input and m output units.

It can consist of any number of hidden units and can exhibit any de-

sired feed-forward connection pattern. We are also given a training set

f(x1; t1); : : : ; (xp; tp)g consisting of p ordered pairs of n- and m-dimensional

vectors, which are called the input and output patterns. Let the primitive

functions at each node of the network be continuous and di�erentiable. The

154 7. The Backpropagation Algorithm

weights of the edges are real numbers selected at random. When the input

pattern xi from the training set is presented to this network, it produces an

output oi di�erent in general from the target ti. What we want is to make oi
and ti identical for i = 1; : : : ; p, by using a learning algorithm. More precisely,

we want to minimize the error function of the network, de�ned as

E =
1

2

pX
i=1

koi � tik2:

After minimizing this function for the training set, new unknown input pat-

terns are presented to the network and we expect it to interpolate. The net-

work must recognize whether a new input vector is similar to learned patterns

and produce a similar output.

The backpropagation algorithm is used to �nd a local minimum of the

error function. The network is initialized with randomly chosen weights. The

gradient of the error function is computed and used to correct the initial

weights. Our task is to compute this gradient recursively.

network +network +
...

xi1

xi 2

xin

Ei

1
2(oi1 −ti1)2

1
2(oi 2 −ti2)2

1
2(oim − tim)2

Fig. 7.6. Extended network for the computation of the error function

The �rst step of the minimization process consists of extending the net-

work, so that it computes the error function automatically. Figure 7.6 shows

how this is done. Every one of the j output units of the network is connected

to a node which evaluates the function 1
2
(oij � tij)

2, where oij and tij denote

the j-th component of the output vector oi and of the target ti. The out-

puts of the additional m nodes are collected at a node which adds them up

and gives the sum Ei as its output. The same network extension has to be

built for each pattern ti. A computing unit collects all quadratic errors and

outputs their sum E1+ � � �+Ep. The output of this extended network is the

error function E.

We now have a network capable of calculating the total error for a given

training set. The weights in the network are the only parameters that can

7.2 General feed-forward networks 155

be modi�ed to make the quadratic error E as low as possible. Because E is

calculated by the extended network exclusively through composition of the

node functions, it is a continuous and di�erentiable function of the ` weights

w1; w2; : : : ; w` in the network. We can thus minimize E by using an iterative

process of gradient descent, for which we need to calculate the gradient

rE = (
@E

@w1

;
@E

@w2

; : : : ;
@E

@w`

):

Each weight is updated using the increment

�wi = �
 @E
@wi

for i = 1; : : : ; `;

where
 represents a learning constant, i.e., a proportionality parameter

which de�nes the step length of each iteration in the negative gradient direc-

tion.

With this extension of the original network the whole learning problem

now reduces to the question of calculating the gradient of a network function

with respect to its weights. Once we have a method to compute this gradient,

we can adjust the network weights iteratively. In this way we expect to �nd

a minimum of the error function, where rE = 0.

7.2.2 Derivatives of network functions

Now forget everything about training sets and learning. Our objective is to

�nd a method for e�ciently calculating the gradient of a one-dimensional

network function according to the weights of the network. Because the net-

work is equivalent to a complex chain of function compositions, we expect

the chain rule of di�erential calculus to play a major role in �nding the gra-

dient of the function. We take account of this fact by giving the nodes of the

network a composite structure. Each node now consists of a left and a right

side, as shown in Figure 7.7. We call this kind of representation a B-diagram

(for backpropagation diagram).

f′ f

Fig. 7.7. The two sides of a computing unit

The right side computes the primitive function associated with the node,

whereas the left side computes the derivative of this primitive function for

the same input.

156 7. The Backpropagation Algorithm

s′ s+1

Fig. 7.8. Separation of integration and activation function

Note that the integration function can be separated from the activation

function by splitting each node into two parts, as shown in Figure 7.8. The

�rst node computes the sum of the incoming inputs, the second one the

activation function s. The derivative of s is s0 and the partial derivative of the

sum of n arguments with respect to any one of them is just 1. This separation

simpli�es our discussion, as we only have to think of a single function which

is being computed at each node and not of two.

The network is evaluated in two stages: in the �rst one, the feed-forward

step, information comes from the left and each unit evaluates its primitive

function f in its right side as well as the derivative f 0 in its left side. Both

results are stored in the unit, but only the result from the right side is trans-

mitted to the units connected to the right. The second step, the backpropa-

gation step, consists in running the whole network backwards, whereby the

stored results are now used. There are three main cases which we have to

consider.

First case: function composition. The B-diagram of Figure 7.9 contains

only two nodes. In the feed-forward step, incoming information into a unit

is used as the argument for the evaluation of the node's primitive function

and its derivative. In this step the network computes the composition of

the functions f and g. Figure 7.10 shows the state of the network after the

feed-forward step. The correct result of the function composition has been

produced at the output unit and each unit has stored some information on

its left side.

x g′ g ′ f f

Fig. 7.9. Network for the composition of two functions

In the backpropagation step the input from the right of the network is

the constant 1. Incoming information to a node is multiplied by the value

stored in its left side. The result of the multiplication is transmitted to the

next unit to the left. We call the result at each node the traversing value

at this node. Figure 7.11 shows the �nal result of the backpropagation step,

which is f 0(g(x))g0(x), i.e., the derivative of the function composition f(g(x))

7.2 General feed-forward networks 157

x

function composition

f (g(x))g′ g (x) ′ f (g(x)) f

Fig. 7.10. Result of the feed-forward step

implemented by this network. The backpropagation step provides an imple-

mentation of the chain rule. Any sequence of function compositions can be

evaluated in this way and its derivative can be obtained in the backpropa-

gation step. We can think of the network as being used backwards with the

input 1, whereby at each node the product with the value stored in the left

side is computed.

g′ g (x) ′ f (g(x)) f 1

backpropagation

′ f (g(x)) ′ g (x)

Fig. 7.11. Result of the backpropagation step

+
1

1
x

function composition

f1

f2

f1(x) + f2(x)

′ f 1 (x)

′ f 2(x)

Fig. 7.12. Addition of functions

Second case: function addition. The next case to consider is the addition

of two primitive functions. Figure 7.12 shows a network for the computation

of the addition of the functions f1 and f2 . The additional node has been

included to handle the addition of the two functions. The partial derivative

of the addition function with respect to any one of the two inputs is 1. In

the feed-forward step the network computes the result f1(x) + f2(x). In the

158 7. The Backpropagation Algorithm

backpropagation step the constant 1 is fed from the left side into the network.

All incoming edges to a unit fan out the traversing value at this node and

distribute it to the connected units to the left. Where two right-to-left paths

meet, the computed traversing values are added. Figure 7.13 shows the result

f
0

1(x) + f
0

2(x) of the backpropagation step, which is the derivative of the

function addition f1 + f2 evaluated at x. A simple proof by induction shows

that the derivative of the addition of any number of functions can be handled

in the same way.

+
1

1

backpropagation

f1

f2

′ f 1 (x)

′ f 2(x)

1′ f 1 (x) + ′ f 2 (x)

Fig. 7.13. Result of the backpropagation step

w
x wx

backpropagation

w
1

feed-forward

w

Fig. 7.14. Forward computation and backpropagation at an edge

Third case: weighted edges. Weighted edges could be handled in the

same manner as function compositions, but there is an easier way to deal

with them. In the feed-forward step the incoming information x is multiplied

by the edge's weight w. The result is wx. In the backpropagation step the

traversing value 1 is multiplied by the weight of the edge. The result is w,

which is the derivative of wx with respect to x. From this we conclude that

weighted edges are used in exactly the same way in both steps: they modulate

7.2 General feed-forward networks 159

the information transmitted in each direction by multiplying it by the edges'

weight.

7.2.3 Steps of the backpropagation algorithm

We can now formulate the complete backpropagation algorithm and prove by

induction that it works in arbitrary feed-forward networks with di�erentiable

activation functions at the nodes. We assume that we are dealing with a

network with a single input and a single output unit.

Algorithm 7.2.1. Backpropagation algorithm.

Consider a network with a single real input x and network function F . The

derivative F 0(x) is computed in two phases:

Feed-forward: the input x is fed into the network. The primitive functions

at the nodes and their derivatives are evaluated at each

node. The derivatives are stored.

Backpropagation: the constant 1 is fed into the output unit and the network

is run backwards. Incoming information to a node is added

and the result is multiplied by the value stored in the left

part of the unit. The result is transmitted to the left of the

unit. The result collected at the input unit is the derivative

of the network function with respect to x.

The following proposition shows that the algorithm is correct.

Proposition 7.2.1. Algorithm 7.2.1 computes the derivative of the network

function F with respect to the input x correctly.

Proof. We have already shown that the algorithm works for units in series,

units in parallel and also for weighted edges. Let us make the induction

assumption that the algorithm works for any feed-forward network with n

or fewer nodes. Consider now the B-diagram of Figure 7.15, which contains

n+1 nodes. The feed-forward step is executed �rst and the result of the single

output unit is the network function F evaluated at x. Assume that m units,

whose respective outputs are F1(x); : : : ; Fm(x) are connected to the output

unit. Since the primitive function of the output unit is ', we know that

F (x) = '(w1F1(x) + w2F2(x) + � � �+ wmFm(x)):

The derivative of F at x is thus

F
0(x) = '

0(s)(w1F
0

1(x) + w2F
0

2(x) + � � �+ wmF
0

m
(x));

where s = '(w1F1(x) + w2F2(x) + � � � + wmFm(x)). The subgraph of the

main graph which includes all possible paths from the input unit to the

160 7. The Backpropagation Algorithm

F(x)

F
1
(x)

F
2

(x)

F
m

(x)

w
1

w
2

w
m

x ϕ(s)′ ϕ (s)
.
.
.

Fig. 7.15. Backpropagation at the last node

unit whose output is F1(x) de�nes a subnetwork whose network function

is F1 and which consists of n or fewer units. By the induction assumption

we can calculate the derivative of F1 at x, by introducing a 1 into the unit

and running the subnetwork backwards. The same can be done with the

units whose outputs are F2(x); : : : ; Fm(x). If instead of 1 we introduce the

constant '0(s) and multiply it by w1 we get w1F
0

1(x)'
0(s) at the input unit in

the backpropagation step. Similarly we get w2F
0

2(x)'
0(s); : : : ; wmF

0

m
(x)'0(s)

for the rest of the units. In the backpropagation step with the whole network

we add these m results and we �nally get

'
0(s)(w1F

0

1(x) + w2F
0

2(x) + � � �+ wmF
0

m
(x))

which is the derivative of F evaluated at x. Note that introducing the con-

stants w1'
0(s); : : : ; wm'

0(s) into the m units connected to the output unit

can be done by introducing a 1 into the output unit, multiplying by the stored

value '0(s) and distributing the result to the m units through the edges with

weights w1; w2; : : : ; wm. We are in fact running the network backwards as the

backpropagation algorithm demands. This means that the algorithm works

with networks of n+ 1 nodes and this concludes the proof. �

Implicit in the above analysis is that all inputs to a node are added be-

fore the one-dimensional activation function is computed. We can consider

also activation functions f of several variables, but in this case the left side

of the unit stores all partial derivatives of f with respect to each variable.

Figure 7.16 shows an example for a function f of two variables x1 and x2, de-

livered through two di�erent edges. In the backpropagation step each stored

partial derivative is multiplied by the traversing value at the node and trans-

mitted to the left through its own edge. It is easy to see that backpropagation

still works in this more general case.

7.2 General feed-forward networks 161

∂F

∂x1

∂F

∂x2

F

x2

x1

Fig. 7.16. Stored partial derivatives at a node

The backpropagation algorithm also works correctly for networks with

more than one input unit in which several independent variables are involved.

In a network with two inputs for example, where the independent variables x1
and x2 are fed into the network, the network result can be called F (x1; x2).

The network function now has two arguments and we can compute the partial

derivative of F with respect to x1 or x2. The feed-forward step remains

unchanged and all left side slots of the units are �lled as usual. However,

in the backpropagation step we can identify two subnetworks: one consists

of all paths connecting the �rst input unit to the output unit and another

of all paths from the second input unit to the output unit. By applying the

backpropagation step in the �rst subnetwork we get the partial derivative of

F with respect to x1 at the �rst input unit. The backpropagation step on

the second subnetwork yields the partial derivative of F with respect to x2

at the second input unit. Note that we can overlap both computations and

perform a single backpropagation step over the whole network. We still get

the same results.

7.2.4 Learning with backpropagation

We consider again the learning problem for neural networks. Since we want

to minimize the error function E, which depends on the network weights, we

have to deal with all weights in the network one at a time. The feed-forward

step is computed in the usual way, but now we also store the output of each

unit in its right side. We perform the backpropagation step in the extended

network that computes the error function and we then �x our attention on

one of the weights, say wij whose associated edge points from the i-th to

the j-th node in the network. This weight can be treated as an input channel

into the subnetwork made of all paths starting at wij and ending in the single

output unit of the network. The information fed into the subnetwork in the

feed-forward step was oiwij , where oi is the stored output of unit i. The

backpropagation step computes the gradient of E with respect to this input,

i.e., @E=@oiwij . Since in the backpropagation step oi is treated as a constant,

we �nally have
@E

@wij

= oi
@E

@oiwij

:

162 7. The Backpropagation Algorithm

Summarizing, the backpropagation step is performed in the usual way. All

subnetworks de�ned by each weight of the network can be handled simulta-

neously, but we now store additionally at each node i:

{ The output oi of the node in the feed-forward step.

{ The cumulative result of the backward computation in the backpropagation

step up to this node. We call this quantity the backpropagated error.

If we denote the backpropagated error at the j-th node by �j , we can then

express the partial derivative of E with respect to wij as:

@E

@wij

= oi�j :

Once all partial derivatives have been computed, we can perform gradient

descent by adding to each weight wij the increment

�wij = �
oi�j :

This correction step is needed to transform the backpropagation algorithm

into a learning method for neural networks.

This graphical proof of the backpropagation algorithm applies to arbitrary

feed-forward topologies. The graphical approach also immediately suggests

hardware implementation techniques for backpropagation.

7.3 The case of layered networks

An important special case of feed-forward networks is that of layered networks

with one or more hidden layers. In this section we give explicit formulas for the

weight updates and show how they can be calculated using linear algebraic

operations. We also show how to label each node with the backpropagated

error in order to avoid redundant computations.

7.3.1 Extended network

We will consider a network with n input sites, k hidden, and m output units.

The weight between input site i and hidden unit j will be called w
(1)
ij
. The

weight between hidden unit i and output unit j will be called w
(2)
ij
. The bias

�� of each unit is implemented as the weight of an additional edge. Input

vectors are thus extended with a 1 component, and the same is done with

the output vector from the hidden layer. Figure 7.17 shows how this is done.

The weight between the constant 1 and the hidden unit j is called w
(1)
n+1;j

and the weight between the constant 1 and the output unit j is denoted by

w
(2)

k+1;j .

7.3 The case of layered networks 163

n
input sites

m
output units

1

1

hidden units

connection matrix

W1
connection matrix

W2

w n+1,

(1)

w +1,k

site n+1

k

k m
(2)

.

.

.
.
.
.

.

.

.

Fig. 7.17. Notation for the three-layered network

There are (n + 1) � k weights between input sites and hidden units and

(k+1)�m between hidden and output units. Let W1 denote the (n+1)�k

matrix with component w
(1)
ij

at the i-th row and the j-th column. Similarly let

W2 denote the (k+1)�mmatrix with components w
(2)
ij
. We use an overlined

notation to emphasize that the last row of both matrices corresponds to the

biases of the computing units. The matrix of weights without this last row

will be needed in the backpropagation step. The n-dimensional input vector

o = (o1; : : : ; on) is extended, transforming it to ô = (o1; : : : ; on; 1). The

excitation netj of the j-th hidden unit is given by

netj =

n+1X
i=1

w
(1)
ij

ôi:

The activation function is a sigmoid and the output o
(1)

j
of this unit is thus

o
(1)
j

= s

n+1X
i=1

w
(1)
ij

ôi

!
:

The excitation of all units in the hidden layer can be computed with the

vector-matrix multiplication ôW1. The vector o(1) whose components are

the outputs of the hidden units is given by

o(1) = s(ôW1);

using the convention of applying the sigmoid to each component of the ar-

gument vector. The excitation of the units in the output layer is computed

164 7. The Backpropagation Algorithm

using the extended vector ô(1) = (o
(1)
1 ; : : : ; o

(1)

k
; 1). The output of the network

is the m-dimensional vector o(2), where

o(2) = s(ô(1)W2):

These formulas can be generalized for any number of layers and allow direct

computation of the
ow of information in the network with simple matrix

operations.

7.3.2 Steps of the algorithm

Figure 7.18 shows the extended network for computation of the error func-

tion. In order to simplify the discussion we deal with a single input-output

pair (o; t) and generalize later to p training examples. The network has been

extended with an additional layer of units. The right sides compute the

quadratic deviation 1
2
(o
(2)
i
� ti) for the i-th component of the output vec-

tor and the left sides store (o
(2)
i
� ti). Each output unit i in the original

network computes the sigmoid s and produces the output o
(2)
i
. Addition of

the quadratic deviations gives the error E. The error function for p input-

output examples can be computed by creating p networks like the one shown,

one for each training pair, and adding the outputs of all of them to produce

the total error of the training set.

E

′ s s

′ s s

′ s s

output units

i-th hidden
unit

+oi
(1)

o1
(2)

o2
(2)

1
2(o1

(2) − t1)
2(o1

(2) −t1)

1
2(o2

(2) − t2)2(o2
(2) −t2)

1
2(om

(2) − tm)2(om
(2) −tm)2

.

.

.
.
.
.

om
(2)

wim
(2)

Fig. 7.18. Extended multilayer network for the computation of E

After choosing the weights of the network randomly, the backpropagation

algorithm is used to compute the necessary corrections. The algorithm can

be decomposed in the following four steps:

7.3 The case of layered networks 165

i) Feed-forward computation

ii) Backpropagation to the output layer

iii) Backpropagation to the hidden layer

iv) Weight updates

The algorithm is stopped when the value of the error function has become

su�ciently small.

First step: feed-forward computation. The vector o is presented to the

network. The vectors o(1) and o(2) are computed and stored. The evaluated

derivatives of the activation functions are also stored at each unit.

Second step: backpropagation to the output layer. We are looking for

the �rst set of partial derivatives @E=@w
(2)
ij
. The backpropagation path from

the output of the network up to the output unit j is shown in the B-diagram

of Figure 7.19.

+1 1

j-th output unit

i-th hidden unit quadratic error of the
j-th component

backpropagated error up to unit j

backpropagation

oi
(1)

wij
(2)

oj
(2) 1− oj

(2)()

oj
(2) 1− oj

(2)() oj
(2) −t j()

oj
(2) −t j() 1

2 oj
(2) − tj()

2

oj
(2)

Fig. 7.19. Backpropagation path up to output unit j

From this path we can collect by simple inspection all the multiplicative

terms which de�ne the backpropagated error �
(2)
j

. Therefore

�
(2)
j

= o
(2)
j
(1� o

(2)
j
)(o

(2)
j
� tj);

and the partial derivative we are looking for is

@E

@w
(2)
ij

= [o
(2)
j
(1� o

(2)
j
)(o

(2)
j
� tj)]o

(1)
i

= �
(2)
j

o
(1)
i
:

Remember that for this last step we consider the weight w
(2)
ij

to be a variable

and its input oi(1) a constant.

Figure 7.20 shows the general situation we �nd during the backpropaga-

tion algorithm. At the input side of the edge with weight wij we have o
(1)

i

and at the output side the backpropagated error �
(2)

j
.

166 7. The Backpropagation Algorithm

oi
(1) δ j

(2)
wij

(2)

Fig. 7.20. Input and backpropagated error at an edge

Third step: backpropagation to the hidden layer. Now we want to

compute the partial derivatives @E=@w
(1)
ij
. Each unit j in the hidden layer

is connected to each unit q in the output layer with an edge of weight w
(2)
jq
,

for q = 1; : : : ;m. The backpropagated error up to unit j in the hidden layer

must be computed taking into account all possible backward paths, as shown

in Figure 7.21. The backpropagated error is then

�
(1)
j

= o
(1)
j
(1� o

(1)
j
)

mX
q=1

w
(2)
jq
�
(2)
q

:

Therefore the partial derivative we are looking for is

@E

@w
(1)
ij

= �
(1)
j

oi:

The backpropagated error can be computed in the same way for any number

of hidden layers and the expression for the partial derivatives of E keeps the

same analytic form.

Σ

hidden unit j

backpropagated error to the j-th hidden unit

backpropagation

input site i

backpropagated error

oj
(1)

wij
(1)

oi

wj1
(2)

wj 2
(2)

wjm
(2)

δ1
(2)

δ2
(2)

δm
(2)

oj
(1)(1 −oj

(1)) wjq
(2)

δq
(2)

q =1

m

oj
(1)(1− oj

(1))
.
.
. .

.

.

Fig. 7.21. All paths up to input site i

7.3 The case of layered networks 167

Fourth step: weight updates. After computing all partial derivatives the

network weights are updated in the negative gradient direction. A learning

constant
 de�nes the step length of the correction. The corrections for the

weights are given by

�w
(2)
ij

= �
o(1)
i
�
(2)
j

; for i = 1; : : : ; k + 1; j = 1; : : : ;m;

and

�w
(1)
ij

= �
oi�(1)j
; for i = 1; : : : ; n+ 1; j = 1; : : : ; k;

where we use the convention that on+1 = o
(1)

k+1 = 1. It is very important

to make the corrections to the weights only after the backpropagated error

has been computed for all units in the network. Otherwise the corrections

become intertwined with the backpropagation of the error and the computed

corrections do not correspond any more to the negative gradient direction.

Some authors fall in this trap [16]. Note also that some books de�ne the

backpropagated error as the negative traversing value in the network. In that

case the update equations for the network weights do not have a negative sign

(which is absorbed by the deltas), but this is a matter of pure convention.

More than one training pattern. In the case of p > 1 input-output

patterns, an extended network is used to compute the error function for each

of them separately. The weight corrections are computed for each pattern

and so we get, for example, for weight w
(1)
ij

the corrections

�1w
(1)
ij

; �2w
(1)
ij

; : : : ; �pw
(1)
ij

:

The necessary update in the gradient direction is then

�w
(1)

ij
= �1w

(1)

ij
+�2w

(1)

ij
+ � � �+�pw

(1)

ij
:

We speak of batch or o�-line updates when the weight corrections are made

in this way. Often, however, the weight updates are made sequentially after

each pattern presentation (this is called on-line training). In this case the

corrections do not exactly follow the negative gradient direction, but if the

training patterns are selected randomly the search direction oscillates around

the exact gradient direction and, on average, the algorithm implements a form

of descent in the error function. The rationale for using on-line training is

that adding some noise to the gradient direction can help to avoid falling

into shallow local minima of the error function. Also, when the training set

consists of thousands of training patterns, it is very expensive to compute

the exact gradient direction since each epoch (one round of presentation of

all patterns to the network) consists of many feed-forward passes and on-line

training becomes more e�cient [391].

168 7. The Backpropagation Algorithm

7.3.3 Backpropagation in matrix form

We have seen that the graph labeling approach for the proof of the back-

propagation algorithm is completely general and is not limited to the case

of regular layered architectures. However this special case can be put into a

form suitable for vector processors or special machines for linear algebraic

operations.

We have already shown that in a network with a hidden and an output

layer (n, k and m units) the input o produces the output o(2) = s(ô(1)W2)

where o(1) = s(ôW1). In the backpropagation step we only need the �rst n

rows of matrixW1. We call this n�k matrixW1. Similarly, the k�m matrix

W2 is composed of the �rst k rows of the matrixW2. We make this reduction

because we do not need to backpropagate any values to the constant inputs

corresponding to each bias.

The derivatives stored in the feed-forward step at the k hidden units and

the m output units can be written as the two diagonal matrices

D2 =

0
BBBB@

o
(2)
1 (1� o

(2)
1) 0 � � � 0

0 o
(2)
2 (1� o

(2)
2) � � � 0

...
...

. . .
...

0 0 � � � o
(2)
m (1� o

(2)
m)

1
CCCCA ;

and

D1 =

0
BBBB@

o
(1)
1 (1� o

(1)
1) 0 � � � 0

0 o
(1)
2 (1� o

(1)
2) � � � 0

...
...

. . .
...

0 0 � � � o
(1)

k
(1� o

(1)

k
)

1
CCCCA :

De�ne the vector e of the stored derivatives of the quadratic deviations as

e =

0
BBBB@

(o
(2)
1 � t1)

(o
(2)
2 � t2)

...

(o
(2)
m � tm)

1
CCCCA

The m-dimensional vector �(2) of the backpropagated error up to the output

units is given by the expression

�
(2) = D2e:

The k-dimensional vector of the backpropagated error up to the hidden layer

is

�
(1) = D1W2�

(2)
:

7.3 The case of layered networks 169

The corrections for the matrices W1 and W2 are then given by

�W
T

2 = �
�(2)ô1 (7.1)

and
�W

T

1 = �
�(1)ô: (7.2)

The only necessary operations are vector-matrix, matrix-vector, and vector-

vector multiplications. In Chap. 18 we describe computer architectures op-

timized for this kind of operation. It is easy to generalize these equations

for ` layers of computing units. Assume that the connection matrix between

layer i and i+1 is denoted by Wi+1 (layer 0 is the layer of input sites). The

backpropagated error to the output layer is then

�
(`) = D`e:

The backpropagated error to the i-th computing layer is de�ned recursively

by
�
(i) = DiWi+1�

(i+1)
; for i = 1; : : : ; `� 1:

or alternatively

�
(i) = DiWi+1 � � �W`�1D`�1W`D`e:

The corrections to the weight matrices are computed in the same way as for

two layers of computing units.

7.3.4 The locality of backpropagation

We can now prove using a B-diagram that addition is the only integration

function which preserves the locality of learning when backpropagation is

used.

f′f*

a

b

a

b

f ′(a b)b

backpropagation

f ′(a b)a

Fig. 7.22. Multiplication as integration function

In the networks we have seen so far the backpropagation algorithm ex-

ploits only local information. This means that only information which arrives

from an input line in the feed-forward step is stored at the unit and sent back

through the same line in the backpropagation step. An example can make this

point clear. Assume that the integration function of a unit is multiplication

170 7. The Backpropagation Algorithm

and its activation function is f . Figure 7.22 shows a split view of the compu-

tation: two inputs a and b come from two input lines, the integration function

responds with the product ab and this result is passed as argument to f . With

backpropagation we can compute the partial derivative of f(ab) with respect

to a and with respect to b. But in this case the value b must be transported

back through the upper edge and the value a through the lower one. Since

b arrived through the other edge, the locality of the learning algorithm has

been lost. The question is which kinds of integration functions preserve the

locality of learning. The answer is given by the following proposition.

Proposition 7.3.1. In a unit with n inputs x1; : : : ; xn only integration func-

tions of the form

I(x1; : : : ; xn) = F1(x1) + F2(x2) + � � �+ Fn(xn) + C;

where C is a constant, guarantee the locality of the backpropagation algorithm

in the sense that at an edge i 6= j no information about xj has to be explicitly

stored.

Proof. Let the integration function of the unit be the function I of n argu-

ments. If, in the backpropagation step, only a function fi of the variable xi
can be stored at the computing unit in order to be transmitted through the

i-th input line in the backpropagation step, then we know that

@I

@xi
= fi(xi); for i = 1; : : : ; n:

Therefore by integrating these equations we obtain:

I(x1; x2; : : : ; xn) = F1(x1) +G1(x2; : : : ; xn);

I(x1; x2; : : : ; xn) = F2(x2) +G2(x2; : : : ; xn);

...

I(x1; x2; : : : ; xn) = Fn(xn) +Gn(x2; : : : ; xn);

where Fi denotes the integral of fi and G1; : : : ; Gn are real functions of n�1

arguments. Since the function I has a unique form, the only possibility is

I(x1; x2; : : : ; xn) = F1(x1) + F2(x2) + � � �+ Fn(xn) + C

where C is a constant. This means that information arriving from each line

can be preprocessed by the Fi functions and then has to be added. Therefore

only integration functions with this form preserve locality. �

7.4 Recurrent networks 171

7.3.5 Error during training

We discussed the form of the error function for the XOR problem in the

last chapter. It is interesting to see how backpropagation performs when con-

fronted with this problem. Figure 7.23 shows the evolution of the total error

during training of a network of three computing units. After 600 iterations

the algorithm found a solution to the learning problem. In the �gure the er-

ror falls fast at the beginning and end of training. Between these two zones

lies a region in which the error function seems to be almost
at and where

progress is slow. This corresponds to a region which would be totally
at

if step functions were used as activation functions of the units. Now, using

the sigmoid, this region presents a small slope in the direction of the global

minimum.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

XOR experiment

iterations

error

6000 300

Fig. 7.23. Error function for 600 iterations of backpropagation

In the next chapter we discuss how to make backpropagation converge

faster, taking into account the behavior of the algorithm at the
at spots of

the error function.

7.4 Recurrent networks

The backpropagation algorithm can also be extended to the case of recurrent

networks. To deal with this kind of systems we introduce a discrete time

variable t. At time t all units in the network recompute their outputs, which

are then transmitted at time t+1. Continuing in this step-by-step fashion, the

system produces a sequence of output values when a constant or time varying

input is fed into the network. As we already saw in Chap. 2, a recurrent

network behaves like a �nite automaton. The question now is how to train

such an automaton to produce a desired sequence of output values.

172 7. The Backpropagation Algorithm

7.4.1 Backpropagation through time

The simplest way to deal with a recurrent network is to consider a �nite

number of iterations only. Assume for generality that a network of n com-

puting units is fully connected and that wij is the weight associated with

the edge from node i to node j. By unfolding the network at the time steps

1; 2; : : : ; T , we can think of this recurrent network as a feed-forward network

with T stages of computation. At each time step t an external input x(t) is

fed into the network and the outputs (o
(t)
1 ; : : : ; o

(t)
n) of all computing units

are recorded. We call the n-dimensional vector of the units' outputs at time t

the network state o(t). We assume that the initial values of all unit's outputs

are zero at t = 0, but the external input x(0) can be di�erent from zero. Fig-

ure 7.24 shows a diagram of the unfolded network. This unfolding strategy

which converts a recurrent network into a feed-forward network in order to

apply the backpropagation algorithm is called backpropagation through time

or just BPTT [383].

unit 2

unit n

t = 1 t = 2 t = Tt = 0

(0) (1) (2) (T)x x x x

(0) (1) (T)o o ounit 1

Fig. 7.24. Backpropagation through time

Let W stand for the n� n matrix of network weights wij . Let W0 stand

for the m� n matrix of interconnections between m input sites and n units.

The feed-forward step is computed in the usual manner, starting with an

initial m-dimensional external input x(0). At each time step t the network

state o(t) (an n-dimensional row vector) and the vector of derivatives of the

activation function at each node o0(t) are stored. The error of the network can

be measured after each time step if a sequence of values is to be produced,

or just after the �nal step T if only the �nal output is of importance. We

will handle the �rst, more general case. Denote the di�erence between the

7.4 Recurrent networks 173

n-dimensional target y(t) at time t and the output of the network by e(t) =�
o(t) � y(t)

�T
. This is an n-dimensional column vector, but in most cases we

are only interested in the outputs of some units in the network. In that case

de�ne ei(t) = 0 for each unit i, whose precise state is unimportant and which

can remain hidden from view.

w1 ≡ w

w2 ≡ w

Fig. 7.25. A duplicated weight in a network

w

*

*

Fig. 7.26. Transformed network

Things become complicated when we consider that each weight in the

network is present at each stage of the unfolded network. Until now we had

only handled the case of unique weights. However, any network with repeated

weights can easily be transformed into a network with unique weights. As-

sume that after the feed-forward step the state of the network is the one

shown in Figure 7.25. Weight w is duplicated, but received di�erent inputs

o1 and o2 in the feed-forward step at the two di�erent locations in the net-

work. The transformed network in Figure 7.26 is indistinguishable from the

original network from the viewpoint of the results it produces. Note that the

two edges associated with weight w now have weight 1 and a multiplication

is performed by the two additional units in the middle of the edges. In this

transformed network w appears only once and we can perform backpropaga-

174 7. The Backpropagation Algorithm

tion as usual. There are two groups of paths, the ones coming from the �rst

multiplier to w and the ones coming from the second. This means that we can

just perform backpropagation as usual in the original network. At the �rst

edge we obtain @E=@w1, at the second @E=@w2, and since w1 is the same

variable as w2, the desired partial derivative is

@E

@w
=

@E

@w1

+
@E

@w2

:

We can thus conclude in general that in the case of the same weight being

associated with several edges, backpropagation is performed as usual for each

of those edges and the results are simply added.

The backpropagation phase of BPTT starts from the right. The back-

propagated error at time T is given by

�
(T) = D(T)e(T);

whereD(T) is the n�n diagonal matrix whose component at the i-th diagonal

element is o0
i

(T)
, i.e., the stored derivative of the i-th unit output at time T .

The backpropagated error at time T � 1 is given by

�
(T�1) = D(T�1)e(T�1) +D(T�1)WD(T)e(T) ;

where we have considered all paths from the computed errors at time T and

T � 1 to each weight. In general, the backpropagated error at stage i, for

i = 0; : : : ; T � 1 is
�
(i) = D(i)(e(i) +W�

(i+1)):

The analytic expression for the �nal weight corrections are

�W
T

= �

�
�
(1)ô(0) + � � �+ �

(T)ô(T�1)
�

(7.3)

�W
T

0 = �

�
�
(0)x̂(0) + � � �+ �

(T)x̂(T)
�
; (7.4)

where ô(1); : : : ; ô(T) denote the extended output vectors at steps 1; : : : ; T and

W and W0 the extended matrices W and W0.

Backpropagation through time can be extended to the case of in�nite

time T . In this case we are interested in the limit value of the network's

state, on the assumption that the network's state stabilizes to a �xpoint ~o.

Under some conditions over the activation functions and network topology

such a �xpoint exists and its derivative can be calculated by backpropaga-

tion. The feed-forward step is repeated a certain number of times, until the

network relaxes to a numerically stable state (with certain precision). The

stored node's outputs and derivatives are the ones computed in the last itera-

tion. The network is then run backwards in backpropagation manner until it

reaches a numerically stable state. The gradient of the network function with

respect to each weight can then be calculated in the usual manner. Note that

in this case, we do not need to store all intermediate values of outputs and

7.4 Recurrent networks 175

derivatives at the units, only the �nal ones. This algorithm, called recurrent

backpropagation, was proposed independently by Pineda [342] and Almeida

[20].

7.4.2 Hidden Markov Models

Hidden Markov Models (HMM) form an important special type of recurrent

network. A �rst-order Markov model is any system capable of assuming one of

n di�erent states at time t. The system does not change its state at each time

step deterministically but according to a stochastic dynamics. The probability

of transition from the i-th to the j-th state at each step is given by 0 �
aij � 1 and does not depend on the previous history of transitions. These

probabilities can be arranged in an n � n matrix A. We also assume that

at each step the model emits one of m possible output values. We call the

probability of emitting the k-th output value while in the i-th state bik.

Starting from a de�nite state at time t = 0, the system is allowed to run for

T time units and the generated outputs are recorded. Each new run of the

system generally produces a di�erent sequence of output values. The system

is called a HMM because only the emitted values, not the state transitions,

can be observed.

An example may make this point clear. In speech recognition researchers

postulate that the vocal tract shapes can be quantized in a discrete set of

states roughly associated with the phonemes which compose speech. When

speech is recorded the exact transitions in the vocal tract cannot be observed

and only the produced sound can be measured at some prede�ned time inter-

vals. These are the emissions, and the states of the system are the quantized

con�gurations of the vocal tract. From the measurements we want to infer

the sequence of states of the vocal tract, i.e., the sequence of utterances which

gave rise to the recorded sounds. In order to make this problem manageable,

the set of states and the set of possible sound parameters are quantized (see

Chap. 9 for a deeper discussion of automatic speech recognition).

The general problem when confronted with the recorded sequence of out-

put values of a HMM is to compute the most probable sequence of state

transitions which could have produced them. This is done with a recursive

algorithm.

The state diagram of a HMM can be represented by a network made of n

units (one for each state) and with connections from each unit to each other.

The weights of the connections are the transition probabilities (Figure 7.27).

As in the case of backpropagation through time, we can unfold the network

in order to observe it at each time step. At t = 0 only one of the n units, say

the i-th, produces the output 1, all others zero. State i is the the actual state

of the system. The probability that at time t = 1 the system reaches state

j is given by aij (to avoid cluttering only some of these values are shown in

the diagram). The probability of reaching state k at t = 2 is

176 7. The Backpropagation Algorithm

a33a32

a31

a23

a22

a21 a13

a12

a11

S

S

S

1

2 3

Fig. 7.27. Transition probabilities of a Markov model with three states

nX
j=1

aijajk

which is just the net input at the k-th node in the stage t = 2 of the network

shown in Figure 7.28. Consider now what happens when we can only observe

state 1

state 2

state n

t = 1 t = 2 t = Tt = 0

a11 a11 a11

ann ann ann

an2 an2 an2

an1 an1 an1

ok1 ok 2 okT

Fig. 7.28. Unfolded Hidden Markov Model

the output of the system but not the state transitions (refer to Figure 7.29).

If the system starts at t = 0 in a state given by a discrete probability dis-

tribution �1; �2; : : : ; �n, then the probability of observing the k-th output at

t = 0 is given by

7.4 Recurrent networks 177

nX
i=1

�ibik:

The probability of observing the k-th output at t = 0 and the m-th output

at t = 1 is
nX

j=1

nX
i=1

�ibikaijbjm:

The rest of the stages of the network compute the corresponding probabilities

in a similar manner.

t = 2 t = Tt = 1

a11 a11

ann ann

+

b1k1

b2k1

bnk1

b1k2

b2k2

bnk2

ρ1

ρ2

ρn

1

+

+

+

+

+

+

+

+

+

bnkT

b2kT

b1kT

Fig. 7.29. Computation of the likelihood of a sequence of observations

How can we �nd the unknown transition and emission probabilities for

such an HMM? If we are given a sequence of T observed outputs with indices

k1; k2; : : : ; kT we would like to maximize the likelihood of this sequence, i.e.,

the product of the probabilities that each of them occurs. This can be done by

transforming the unfolded network as shown in Figure 7.29 for T = 3. Notice

that at each stage h we introduced an additional edge from the node i with the

weight bi;kh . In this way the �nal node which collects the sum of the whole

computation e�ectively computes the likelihood of the observed sequence.

Since this unfolded network contains only di�erentiable functions at its nodes

(in fact only addition and the identity function) it can be trained using the

backpropagation algorithm. However, care must be taken to avoid updating

the probabilities in such a way that they become negative or greater than 1.

Also the transition probabilities starting from the same node must always add

up to 1. These conditions can be enforced by an additional transformation

of the network (introducing for example a \softmax" function [39]) or using

the method of Lagrange multipliers. We give only a hint of how this last

178 7. The Backpropagation Algorithm

technique can be implemented so that the reader may complete the network

by her- or himself.

Assume that a function F of n parameters x1; x2; : : : ; xn is to be mini-

mized, subject to the constraint C(x1; x2; : : : ; xn) = 0. We introduce a La-

grange multiplier � and de�ne the new function

L(x1; : : : ; xn; �) = F (x1; : : : ; xn) + �C(x1; : : : ; xn):

To minimize L we compute its gradient and set it to zero. To do this numer-

ically, we follow the negative gradient direction to �nd the minimum. Note

that since
@L

@�
= C(x1; : : : ; xn)

the iteration process does not �nish as long as C(x1; : : : ; xn) 6= 0, because

in that case the partial derivative of L with respect to � is non-zero. If the

iteration process converges, we can be sure that the constraint C is satis�ed.

Care must be taken when the minimum of F is reached at a saddle point

of L. In this case some modi�cations of the basic gradient descent algorithm

are needed [343]. Figure 7.30 shows a diagram of the network (a Lagrange

neural network [468]) adapted to include a constraint. Since all functions in

the network are di�erentiable, the partial derivatives needed can be computed

with the backpropagation algorithm.

x1

x2

xn

+

C

λ

F

Fig. 7.30. Lagrange neural network

7.4.3 Variational problems

Our next example, deals not with a recurrent network, but with a class of

networks built of many repeated stages. Variational problems can also be

expressed and solved numerically using backpropagation networks. A vari-

ational problem is one in which we are looking for a function which can

optimize a certain cost function. Usually cost is expressed analytically in

terms of the unknown function and �nding a solution is in many cases an

7.4 Recurrent networks 179

extremely di�cult problem. An example can illustrate the general technique

that can be used.

Assume that the problem is to minimize P with two boundary conditions:

P (u) =

Z 1

o

F (u; u0)dx with u(0) = a and u(1) = b:

Here u is an unknown function of x and F (u; u0) a cost function. P represents

the total cost associated with u over the interval [0; 1]. Since we want to

solve this problem numerically, we discretize the function u by partitioning

the interval [0; 1] into n � 1 subintervals. The discrete successive values of

the function are denoted by u1; u2; : : : ; un, where u1 = a and un = b are the

boundary conditions. The length of the subintervals is �x = 1=(n� 1). The

discrete function Pd that we want to minimize is thus:

Pd(u) =

nX
i=1

F (ui; u
0

i
)�x:

Since minimizing Pd(u) is equivalent to minimizing PD(u) = Pd(u)=�x (�x is

constant), we proceed to minimize PD(u). We can approximate the derivative

u
0

i
by (ui � ui�1)=�x. Figure 7.31 shows the network that computes the

discrete approximation PD(u).

ui−1

ui

ui+1

+ 1
∆x

-1

+
-1

+ PD

F
∂F

∂u

∂F

∂ ′u

F
∂F

∂u

∂F

∂ ′u

1
∆x

Fig. 7.31. A network for variational calculus

We can now compute the gradient of PD with respect to each ui by per-

forming backpropagation on this network. Note that there are three possible

paths from PD to ui, so the partial derivative of PD with respect to ui is

180 7. The Backpropagation Algorithm

@PD

@ui
=

@F

@u
(ui; u

0

i
)| {z }

path1

+
1

�x

@F

@u0
(ui; u

0

i
)| {z }

path2

� 1

�x

@F

@u0
(ui+1; u

0

i+1)| {z }
path3

which can be rearranged to

@Pd

@ui
=

@F

@u
(ui; u

0

i
)� 1

�x

�
@F

@u0
(ui+1; u

0

i+1)�
@F

@u0
(ui; u

0

i
)

�
:

At the minimum all these terms should vanish and we get the expression

@F

@u
(ui; u

0

i
)� 1

�x

�
@F

@u0
(ui+1; u

0

i+1)�
@F

@u0
(ui; u

0

i
)

�
= 0

which is the discrete version of the celebrated Euler equation

@F

@u
� d

dx

�
@F

@u0

�
= 0:

In fact this can be considered a simple derivation of Euler's result in a discrete

setting.

By selecting another function F many variational problems can be solved

numerically. The curve of minimal length between two points can be found

by using the function

F (u; u0) =
p
1 + u0

2 =

p
dx2 + du2

dx

which when integrated with respect to x corresponds to the path length

between the boundary conditions. In 1962 Dreyfus solved the constrained

brachystochrone problem, one of the most famous problems of variational

calculus, using a numerical approach similar to the one discussed here [115].

7.5 Historical and bibliographical remarks

The �eld of neural networks started with the investigations of researchers of

the caliber of McCulloch, Wiener, and von Neumann. The perceptron era was

its Sturm und Drang period, the epoch in which many new ideas were tested

and novel problems were being solved using perceptrons. However, at the end

of the 1960s it became evident that more complex multilayered architectures

demanded a new learning paradigm. In the absence of such an algorithm,

a new era of cautious incremental improvements and silent experimentation

began.

The algorithm that the neural network community needed had already

been developed by researchers working in the �eld of optimal control. These

researchers were dealing with variational problems with boundary conditions

in which a function capable of optimizing a cost function subject to some

7.5 Historical and bibliographical remarks 181

constraints must be determined. As in the �eld of neural networks, a function

f must be found and a set of input-output values is prede�ned for some points.

Around 1960 Kelley and Bryson developed numerical methods to solve this

variational problem which relied on a recursive calculation of the gradient

of a cost function according to its unknown parameters [241, 76]. In 1962

Dreyfus, also known for his criticism of symbolic AI, showed how to express

the variational problems as a kind of multistage system and gave a simple

derivation of what we now call the backpropagation algorithm [115, 116].

He was the �rst to use an approach based on the chain rule, in fact one

very similar to that used later by the PDP group. Bryson and Ho later

summarized this technique in their classical book on optimal control [76].

However, Bryson gives credit for the idea of using numerical methods to

solve variational problems to Courant, who in 1943 proposed using gradient

descent along the Euler expression (the partial derivative of the cost function)

to �nd numerical approximations to variational problems [93].

The algorithm was redeveloped by some other researchers working in the

�eld of statistics or pattern recognition. We can look as far back as Gauss to

�nd mathematicians already doing function-�tting with numerical methods.

Gauss developed the method of least squares and considered the �tting of

nonlinear functions of unknown parameters. In the Gauss{Newton method

the function F of parameters w1; : : : ; wn is approximated by its Taylor ex-

pansion at an initial point using only the �rst-order partial derivatives. Then

a least-squares problem is solved and a new set of parameters is found. This

is done iteratively until the function F approximates the empirical data with

the desired accuracy [180]. Another possibility, however, is the use of the

partial derivatives of F with respect to the parameters to do a search in the

gradient direction. This approach was already being used by statisticians in

the 1960s [292]. In 1974 Werbos considered the case of general function com-

position and proposed the backpropagation algorithm [442, 443] as a kind

of nonlinear regression. The points given as the training set are considered

not as boundary conditions, which cannot be violated, but as experimental

points which have to be approximated by a suitable function. The special

case of recursive backpropagation for Hidden Markov Models was solved by

Baum, also considering the restrictions on the range of probability values

[47], which he solved by doing a projective transformation after each update

of the set of probabilities. His \forward-backward" algorithm for HMMs can

be considered one of the precursors of the backpropagation algorithm.

Finally, the AI community also came to rediscovering backpropagation on

its own. Rumelhart and his coauthors [383] used it to optimize multilayered

neural networks in the 1980s. Le Cun is also mentioned frequently as one

of the authors who reinvented backpropagation [269]. The main di�erence

however to the approach of both the control or statistics community was

in conceiving the networks of functions as interconnected computing units.

We said before that backpropagation reduces to the recursive computation

182 7. The Backpropagation Algorithm

of the chain rule. But there is also a di�erence: the network of computing

units serves as the underlying data structure to store values of previous com-

putations, avoiding redundant work by the simple expedient of running the

network backwards and labeling the nodes with the backpropagated error.

In this sense the backpropagation algorithm, as rediscovered by the AI com-

munity, added something new, namely the concept of functions as dynamical

objects being evaluated by a network of computing elements and backprop-

agation as an inversion of the network dynamics.

Exercises

1. Implement the backpropagation algorithm and train a network that com-

putes the parity of 5 input bits.

2. The symmetric sigmoid is de�ned as t(x) = 2s(x) � 1, where s(�) is

the usual sigmoid function. Find the new expressions for the weight cor-

rections in a layered network in which the nodes use t as a primitive

function.

3. Find the analytic expressions for the partial derivative of the error func-

tion according to each one of the input values to the network. What could

be done with this kind of information?

4. Find a discrete approximation to the curve of minimal length between

two points in IR3 using a backpropagation network.

